Skip to content

Derivatives

The following is a table of first order derivatives.

Description Derivative Result
Constant \(c'\) \(0\)
Variable \(x'\) \(1\)
Scaled variable \((cx)'\) \(cx'\)
Sum \((x+y)'\) \(x' + y'\)
Product \((xy)'\) \(xy'+x'y\)
Quot \(\frac{x}{y}\) \(\frac{x.y'+x'.y}{y^2}\)
Reciprocal \(\frac{1}{x}\) \(\frac{-x'}{x^2}\)
Power \((x^y)'\) \(yx^{y-1}\)
Square root \(\sqrt{x}'\) \(\frac{1}{2\sqrt{x}}\)
Chained rule \(\frac{\partial f(g(x))}{\partial x}\) $\frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x} $
Multivariable rule \(\frac{\partial f(u(x), v(x))}{\partial x}\) \(\frac{\partial f(u(x), v(x))}{\partial u(x)}\frac{\partial f(u(x), v(x))}{\partial u(x)} + \frac{\partial f(u(x), v(x))}{\partial x}\)
Vector square length \((\vec{v}.\vec{v})'\) \(2\vec{v}\vec{v}'\)
Vector length \(\|\vec{v}\|'\) \(\hat{v}\vec{v}'\)