Derivatives
The following is a table of first order derivatives.
| Description | Derivative | Result |
|---|---|---|
| Constant | \(c'\) | \(0\) |
| Variable | \(x'\) | \(1\) |
| Scaled variable | \((cx)'\) | \(cx'\) |
| Sum | \((x+y)'\) | \(x' + y'\) |
| Product | \((xy)'\) | \(xy'+x'y\) |
| Quot | \(\frac{x}{y}\) | \(\frac{x.y'+x'.y}{y^2}\) |
| Reciprocal | \(\frac{1}{x}\) | \(\frac{-x'}{x^2}\) |
| Power | \((x^y)'\) | \(yx^{y-1}\) |
| Square root | \(\sqrt{x}'\) | \(\frac{1}{2\sqrt{x}}\) |
| Chained rule | \(\frac{\partial f(g(x))}{\partial x}\) | $\frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x} $ |
| Multivariable rule | \(\frac{\partial f(u(x), v(x))}{\partial x}\) | \(\frac{\partial f(u(x), v(x))}{\partial u(x)}\frac{\partial f(u(x), v(x))}{\partial u(x)} + \frac{\partial f(u(x), v(x))}{\partial x}\) |
| Vector square length | \((\vec{v}.\vec{v})'\) | \(2\vec{v}\vec{v}'\) |
| Vector length | \(\|\vec{v}\|'\) | \(\hat{v}\vec{v}'\) |