Derivatives
The following is a table of first order derivatives.
Description | Derivative | Result |
---|---|---|
Constant | \(c'\) | \(0\) |
Variable | \(x'\) | \(1\) |
Scaled variable | \((cx)'\) | \(cx'\) |
Sum | \((x+y)'\) | \(x' + y'\) |
Product | \((xy)'\) | \(xy'+x'y\) |
Quot | \(\frac{x}{y}\) | \(\frac{x.y'+x'.y}{y^2}\) |
Reciprocal | \(\frac{1}{x}\) | \(\frac{-x'}{x^2}\) |
Power | \((x^y)'\) | \(yx^{y-1}\) |
Square root | \(\sqrt{x}'\) | \(\frac{1}{2\sqrt{x}}\) |
Chained rule | \(\frac{\partial f(g(x))}{\partial x}\) | $\frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x} $ |
Multivariable rule | \(\frac{\partial f(u(x), v(x))}{\partial x}\) | \(\frac{\partial f(u(x), v(x))}{\partial u(x)}\frac{\partial f(u(x), v(x))}{\partial u(x)} + \frac{\partial f(u(x), v(x))}{\partial x}\) |
Vector square length | \((\vec{v}.\vec{v})'\) | \(2\vec{v}\vec{v}'\) |
Vector length | \(\|\vec{v}\|'\) | \(\hat{v}\vec{v}'\) |